RAS Chemistry & Material ScienceМембраны и мембранные технологии Membranes and Membrane Technologies

  • ISSN (Print) 2218-1172
  • ISSN (Online) 2218-1180

Extractor mode in a reactor with a membrane catalyst

PII
S22181180S2218117225030036-1
DOI
10.7868/S2218118025030036
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 15 / Issue number 3
Pages
174-188
Abstract
A kinetic experiment in the process of dry reforming of methane was performed for the first time in a reactor with a membrane catalyst for the extractor mode, in which the hypothesis of activated mass transfer based on the phenomenon of thermal slip was used for the analysis of the results. The results obtained show that in both parts of the reaction space (in the retentate and in the permeate) of the membrane reactor, intensification of the intermediate stages of dry reforming of methane is observed, compared with the contactor modes. Unlike the contactor modes, in which the methane cracking stage is shifted toward the formation of products of this reaction, in the extractor mode, the process occurs near equilibrium, and the constants of the direct and reverse reactions are close. In this mode, the reverse reaction of the water shift is strongly shifted toward the formation of water gas.
Keywords
мембранный реактор углекислотная конверсия метана режим экстрактора кинетический эксперимент активированный массоперенос
Date of publication
11.11.2025
Year of publication
2025
Number of purchasers
0
Views
29

References

  1. 1. Грязнов В.М., Смирнов В.С. // Успехи химии. 1974. Т. 43. С. 1716–1738.
  2. 2. Basile A., et al. Handbook of membrane reactors. Vol. 1: Fundamental materials science, design and optimisation. Woodhead Publishing, 2013. 690 p.
  3. 3. Ernst B., Haag S., Burgard M. // J. Membrane Science. 2007. V. 288. P. 208–217.
  4. 4. Weyten H., Keizer K., Kinoo A., Luyten J., Leysen R. // AIChE J. 1997. V. 43. P. 1819–1827.
  5. 5. Weyten H., Luyten J., Keizerb K., Willems L., Ley- sen R. // Catalysis Today. 2000. V. 56. P. 3–11.
  6. 6. Itoh N., Xu W.C., Hara S., Kakehida K., Kaneko Y., Igarashi A. // Ind. Eng. Chem. Res. 2003. V. 42. P. 6576–6581.
  7. 7. Дытнерский Ю.И., Брыков В.П., Каграманов Г.Г. Мембранное разделение газов. M.: Химия, 1991. С. 334
  8. 8. Ross J.H., Xue E. // Catalysis Today. 1995. V. 25. P. 291–301.
  9. 9. Didenko L.P., Sementsova L.A., Babak V.N., Chizhov P.E., Dorofeeva T.V., Kvurt J.P. // Membranes and Membrane Technologies. 2020. V. 2. P. 85–97.
  10. 10. Lombardo E.A., Cornaglia C., Munera J. // Catalysis Today. 2016. V. 259. P. 165–176.
  11. 11. Mironova E.Y., Lytkina A.A., Ermilova M.M., et al. // Pet. Chem. 2020. V. 60. P. 1232–1238.
  12. 12. Iulianelli A., Liguori S., Vita A., Italiano C., Fabiano C., Huang Y., Basile A. // Catalysis Today. 2016. V. 259. P. 368–375.
  13. 13. Iulianelli A., Liguori S., Vita A., Italiano C., Fabiano C., Huang Y., Basile A. // Catalysis Today. 2016. V. 259. P. 368–375.
  14. 14. Daramola M.O., Burger A.J., Giroir-Fendler A. // Chemical Engineering J. 2011. V. 171. P. 618–627.
  15. 15. Benguerba Y., Virginie M., Dumas C., et al. // Kinetics and Catalysis. 2017. V. 58. P. 328–338.
  16. 16. Гаврилова Н.Н., Губин С.А., Мячина М.А., Скудин В.В. // Мембраны и мембранные технологии. 2023. Т. 13. С. 505–520.
  17. 17. Gavrilova N.N., Sapunov V.N., Skudin V.V. // Chemical Engineering J. 2019. V. 374. P. 983–991.
  18. 18. Романков П.Г., Рашковская Н.Б., Фролов В.Ф. Массообменные процессы химической технологии. Л.: Химия, 1975. 336 с.
  19. 19. Коган В.Б. Теоретические основы типовых процессов химической технологии: Учебное пособие. Л.: Химия, 1977. 592 с.
  20. 20. Лыков А.В. Теория сушки. 2-е изд. М.: Энергия, 1968. 472 с.
  21. 21. Gupta N.K. A motionless gas micropump using thermal transpiration in bulk nanoporous materials: dis. … doctor of philosophy / N.K. Gupta; University of Michigan. Michigan, 2010. 162 p.
  22. 22. Membrane Reactors: Distributing Reactants to Improve Selectivity and Yield. Ed. by Andreas Seidel-Morgenstern. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2010. ISBN: 978-3-527-32039-4.
  23. 23. Шульмин Д.А. Углекислотная конверсия углеводов с использованием мембранных катализаторов: дис. … канд. хим. наук: 05.17.07; защищена: 29.11.2011 / Шульмин Денис Александрович. М., 2011. 181 с.
  24. 24. Gavrilova N.N., Gubin S.A., Myachina M.A., Skudin V.V. // Membranes. 2021. V. 11. P. 497.
  25. 25. Karniadakis G., Beskok A., Aluru N. Microflows and Nanoflows: Fundamentals and Simulation. Berlin, Germany: Springer Science & Business Media, 2005. P. 817.
  26. 26. Sharipov F. Rarefied Gas Dynamics: Fundamentals for Research and Practice. First ed. Wiley-VCH Verlag GmbH & Co. KGaA, 2016. P. 305.
  27. 27. Khoshtinat Nikoo M., Amin N.A.S. // Fuel Proc. Technol. 2011. № 92. P. 678–691.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library