- PII
- S2218118025010051-1
- DOI
- 10.7868/S2218118025010051
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 15 / Issue number 1
- Pages
- 63-75
- Abstract
- This paper describes the procedure of developing a protocol for theoretical evaluation of the ionic conductivity of two polyelectrolyte systems consisting of oligomers simulating the lithium form of the Nafion-115 membrane plasticized in one case with dimethyl sulfoxide and in the other case with propylene carbonate. Model systems for theoretical calculations were constructed according to the values of the degree of swelling of the membrane in the mentioned solvents determined experimentally. The protocol for molecular dynamic simulations was selected taking into account the peculiarities of the structure and physicochemical properties of the components of the investigated systems. The analysis of molecular dynamic simulations trajectories included the evaluation of radial distribution functions and self-diffusion coefficients. The author’s code written in the Python language was used to calculate ionic conductivity. The results of the theoretical calculations are in agreement with the experimental data. The modeling approach proposed in this work can be used for relatively fast estimation of ionic conductivity in similar electrolyte systems in a close temperature range up to the phase transition boundary.
- Keywords
- литий-ионные аккумуляторы молекулярно-динамическое моделирование литиевые мембраны Нафион ионная проводимость полимерный электролит с органическим растворителем
- Date of publication
- 29.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 65
References
- 1. Yoo H.D., Markevich E., Salitra G., Sharon D., Aurbach D. // Mater. Today. 2014. V. 17. P. 110. DOI: 10.1016/j.mattod.2014.02.014
- 2. Ding Y., Cano Z.P., Yu A., Lu J., Chen Z. // Electrochem. Energy Rev. 2019. V. 2. P. 1. DOI: 10.1007/s41918-018-0022-z
- 3. Yoon J.H., Cho W.-J., Kang T.H., Lee M., Yi G.-R. // Macromol. Res. 2021. V. 29. P. 509. DOI: 10.1007/s13233-021-9073-9
- 4. Kinlen P.J., Heider J.E., Hubbard D.E. // Sensors Actuators B Chem. 1994. V. 22. P. 13. DOI: 10.1016/0925-4005(94)01254-7
- 5. Luo Q., Zhang H., Chen J., Qian P., Zhai Y. // J. Memb. Sci. 2008. V. 311. P. 98. DOI: 10.1016/j.memsci.2007.11.055
- 6. Xi J., Wu Z., Qiu X., Chen L. // J. Power Sources. 2007. V. 166. P. 531. DOI: 10.1016/j.jpowsour.2007.01.069
- 7. Kusoglu A., Weber A.Z. // Chem. Rev. 2017. V. 117. P. 987. DOI: 10.1021/acs.chemrev.6b00159
- 8. Sanginov E.A., Borisevich S.S., Kayumov R.R., Istomina A.S., Evshchik E.Y., Reznitskikh O.G., Yaroslavtseva T.V., Melnikova T.I., Dobrovolsky Y.A., Bushkova O.V. // Electrochim. Acta. 2021. V. 373. P. 137914. DOI: 10.1016/j.electacta.2021.137914
- 9. Yang L., Zeng J., Ding B., Xu C., Lee J.Y. // Adv. Mater. Interfaces. 2016. V. 3. P. 1600660. DOI: 10.1002/admi.201600660
- 10. Sanginov E.A., Evshchik E.Y., Kayumov R.R., Dobrovol’skii Y.A. // Russ. J. Electrochem. 2015. V. 51. P. 986. DOI: 10.1134/S1023193515100122
- 11. Sanginov E.A., Kayumov R.R., Shmygleva L.V., Lesnichaya V.A., Karelin A.I., Dobrovolsky Y.A. // Solid State Ionics. 2017. V. 300. P. 26. DOI: 10.1016/j.ssi.2016.11.017
- 12. Doyle M., Lewittes M.E., Roelofs M.G., Perusich S.A., Lowrey R.E. // J. Memb. Sci. 2001. V. 184. P. 257. DOI: 10.1016/S0376-7388(00)00642-6
- 13. Cui S., Liu J., Selvan M.E., Keffer D.J., Edwards B.J., Steele W.V. // J. Phys. Chem. B. 2007. V. 111. P. 2208. DOI: 10.1021/jp066388n
- 14. Zhou X., Chen Z., Delgado F., Brenner D., Srivastava R. // J. Electrochem. Soc. 2007. V. 154. P. B82. DOI: 10.1149/1.2388735
- 15. Vishnyakov A., Neimark A.V. // J. Phys. Chem. B. 2001. V. 105. P. 9586. DOI: 10.1021/jp0102567
- 16. Ohkubo T., Kidena K., Takimoto N., Ohira A. // J. Mol. Model. 2011. V. 17. P. 739. DOI: 10.1007/s00894-010-0767-8
- 17. Ohkubo T., Kidena K., Takimoto N., Ohira A. // J. Mol. Model. 2012. V. 18. P. 533. DOI: 10.1007/s00894-011-1091-7
- 18. Sun H., Yu M., Li Z., Almheiri S. // J. Chem. 2015. V. 2015. P. 169680. DOI: 10.1155/2015/169680
- 19. Jang S.S., Molinero V., Çaǧın T., Goddard W.A. // J. Phys. Chem. B. 2004. V. 108. P. 3149. DOI: 10.1021/jp036842c
- 20. Tse Y.-L.S., Herring A.M., Kim K., Voth G.A. // J. Phys. Chem. C. 2013. V. 117. P. 8079. DOI: 10.1021/jp400693g
- 21. Burlatsky S., Darling R.M., Novikov D., Atrazhev V.V., Sultanov V.I., Astakhova T.Y., Su L., Brushett F. // J. Electrochem. Soc. 2016. V. 163. P. A2232. DOI: 10.1149/2.0461610jes
- 22. Fong K.D., Self J., Diederichsen K.M., Wood B.M., McCloskey B.D., Persson K.A. // ACS Cent. Sci. 2019. V. 5. P. 1250. DOI: 10.1021/acscentsci.9b00406
- 23. Fong K.D., Self J., McCloskey B.D., Persson K.A. // Macromolecules. 2021. V. 54. P. 2575. DOI: 10.1021/acs.macromol.0c02545
- 24. Schrödinger Release 2021-2: Maestro, Schrödinger, LLC, New York, NY, 2021.
- 25. Kayumov R.R., Shmygleva L.V., Evshchik E.Y., Sanginov E.A., Popov N.A., Bushkova O.V., Dobrovolsky Y.A. // Russ. J. Electrochem. 2021. V. 57. P. 911. DOI: 10.1134/S1023193521060045
- 26. Banks J.L., Beard H.S., Cao Y., Cho A.E., Damm W., Farid R., Felts A.K., Halgren T.A., Mainz D.T., Maple J.R., Murphy R., Philipp D.M., Repasky M.P., Zhang L.Y., Berne B.J., Friesner R.A., Gallicchio E., Levy R.M. // J. Comput. Chem. 2005. V. 26. P. 1752. DOI: 10.1002/jcc.20292
- 27. Leontyev I., Stuchebrukhov A. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 2613. DOI: 10.1039/c0cp01971b
- 28. Blazquez S., Abascal J.L.F., Lagerweij J., Habibi P., Dey P., Vlugt T.J.H., Moultos O.A., Vega C. // J. Chem. Theory Comput. 2023. V. 19. P. 5380. DOI: 10.1021/acs.jctc.3c00562 DOI K., Chikasako Y., Kawano S. // Fluid Dyn. Mater. Process. 2015. V. 11. DOI: 10.3970/fdmp.2015.011.001
- 29. Brandell D. // Polymer Electrolytes. Molecular dynamics simulations of Li ion and H-conduction in polymer electrolytes. Elsevier, 2010. P. 314–339. DOI 10.1533/9781845699772.1.314
- 30. Raabe G. // Molecular Simulation Studies on Thermophysical Properties: With Application to Working Fluids. Maginn E., ed. Springer Singapore. Singapore, 2017.
- 31. Shim Y. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 28649. DOI: 10.1039/c8cp05190a
- 32. Rapaport D.C. // The Art of Molecular Dynamics Simulation. Cambridge University Press, 2004. DOI: 10.1017/CBO9780511816581
- 33. Maginn E.J., Messerly R.A., Carlson D.J., Roe D.R., Elliot J.R. // Living J. Comput. Mol. Sci. 2018. V. 1. P. 6324 DOI: 10.33011/livecoms.1.1.6324
- 34. Liu H., Maginn E. // J. Chem. Phys. 2011. V. 135. P. 124507
- 35. DOI: 10.1063/1.3643124
- 36. Kumar G., Kartha T.R., Mallik B.S. // J. Phys. Chem. C. 2018. V. 122. P. 26315. DOI: 10.1021/acs.jpcc.8b06581
- 37. Sarangi S.S., Zhao W., Müller-Plathe F., Balasubramanian S. // ChemPhysChem. 2010. V. 11. P. 2001. DOI: 10.1002/cphc.201000111
- 38. France-Lanord A., Grossman J.C. // Phys. Rev. Lett. 2019. V. 122. P. 136001. DOI: 10.1103/PhysRevLett.122.136001
- 39. Del Pópolo M.G., Voth G.A. // J. Phys. Chem. B. 2004. V. 108. P. 1744. DOI: 10.1021/jp0364699
- 40. Kowsari M.H., Alavi S., Najafi B., Gholizadeh K., Dehghanpisheh E., Ranjbar F. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 8826. DOI: 10.1039/c0cp02581j https://github.com/OsherovPM/msd_E_for_ionic_conductivity
- 41. Gebremichael Y., Schrøder T.B., Starr F.W., Glotzer S.C. // Phys. Rev. E. 2001. V. 64. P. 051503. DOI: 10.1103/PhysRevE.64.051503