RAS Chemistry & Material ScienceМембраны и мембранные технологии Membranes and Membrane Technologies

  • ISSN (Print) 2218-1172
  • ISSN (Online) 2218-1180

Estimation of Polyelectrolyte Ionic Conductivity Using Molecular Dynamics Method

PII
S2218118025010051-1
DOI
10.7868/S2218118025010051
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 15 / Issue number 1
Pages
63-75
Abstract
This paper describes the procedure of developing a protocol for theoretical evaluation of the ionic conductivity of two polyelectrolyte systems consisting of oligomers simulating the lithium form of the Nafion-115 membrane plasticized in one case with dimethyl sulfoxide and in the other case with propylene carbonate. Model systems for theoretical calculations were constructed according to the values of the degree of swelling of the membrane in the mentioned solvents determined experimentally. The protocol for molecular dynamic simulations was selected taking into account the peculiarities of the structure and physicochemical properties of the components of the investigated systems. The analysis of molecular dynamic simulations trajectories included the evaluation of radial distribution functions and self-diffusion coefficients. The author’s code written in the Python language was used to calculate ionic conductivity. The results of the theoretical calculations are in agreement with the experimental data. The modeling approach proposed in this work can be used for relatively fast estimation of ionic conductivity in similar electrolyte systems in a close temperature range up to the phase transition boundary.
Keywords
литий-ионные аккумуляторы молекулярно-динамическое моделирование литиевые мембраны Нафион ионная проводимость полимерный электролит с органическим растворителем
Date of publication
29.12.2025
Year of publication
2025
Number of purchasers
0
Views
65

References

  1. 1. Yoo H.D., Markevich E., Salitra G., Sharon D., Aurbach D. // Mater. Today. 2014. V. 17. P. 110. DOI: 10.1016/j.mattod.2014.02.014
  2. 2. Ding Y., Cano Z.P., Yu A., Lu J., Chen Z. // Electrochem. Energy Rev. 2019. V. 2. P. 1. DOI: 10.1007/s41918-018-0022-z
  3. 3. Yoon J.H., Cho W.-J., Kang T.H., Lee M., Yi G.-R. // Macromol. Res. 2021. V. 29. P. 509. DOI: 10.1007/s13233-021-9073-9
  4. 4. Kinlen P.J., Heider J.E., Hubbard D.E. // Sensors Actuators B Chem. 1994. V. 22. P. 13. DOI: 10.1016/0925-4005(94)01254-7
  5. 5. Luo Q., Zhang H., Chen J., Qian P., Zhai Y. // J. Memb. Sci. 2008. V. 311. P. 98. DOI: 10.1016/j.memsci.2007.11.055
  6. 6. Xi J., Wu Z., Qiu X., Chen L. // J. Power Sources. 2007. V. 166. P. 531. DOI: 10.1016/j.jpowsour.2007.01.069
  7. 7. Kusoglu A., Weber A.Z. // Chem. Rev. 2017. V. 117. P. 987. DOI: 10.1021/acs.chemrev.6b00159
  8. 8. Sanginov E.A., Borisevich S.S., Kayumov R.R., Istomina A.S., Evshchik E.Y., Reznitskikh O.G., Yaroslavtseva T.V., Melnikova T.I., Dobrovolsky Y.A., Bushkova O.V. // Electrochim. Acta. 2021. V. 373. P. 137914. DOI: 10.1016/j.electacta.2021.137914
  9. 9. Yang L., Zeng J., Ding B., Xu C., Lee J.Y. // Adv. Mater. Interfaces. 2016. V. 3. P. 1600660. DOI: 10.1002/admi.201600660
  10. 10. Sanginov E.A., Evshchik E.Y., Kayumov R.R., Dobrovol’skii Y.A. // Russ. J. Electrochem. 2015. V. 51. P. 986. DOI: 10.1134/S1023193515100122
  11. 11. Sanginov E.A., Kayumov R.R., Shmygleva L.V., Lesnichaya V.A., Karelin A.I., Dobrovolsky Y.A. // Solid State Ionics. 2017. V. 300. P. 26. DOI: 10.1016/j.ssi.2016.11.017
  12. 12. Doyle M., Lewittes M.E., Roelofs M.G., Perusich S.A., Lowrey R.E. // J. Memb. Sci. 2001. V. 184. P. 257. DOI: 10.1016/S0376-7388(00)00642-6
  13. 13. Cui S., Liu J., Selvan M.E., Keffer D.J., Edwards B.J., Steele W.V. // J. Phys. Chem. B. 2007. V. 111. P. 2208. DOI: 10.1021/jp066388n
  14. 14. Zhou X., Chen Z., Delgado F., Brenner D., Srivastava R. // J. Electrochem. Soc. 2007. V. 154. P. B82. DOI: 10.1149/1.2388735
  15. 15. Vishnyakov A., Neimark A.V. // J. Phys. Chem. B. 2001. V. 105. P. 9586. DOI: 10.1021/jp0102567
  16. 16. Ohkubo T., Kidena K., Takimoto N., Ohira A. // J. Mol. Model. 2011. V. 17. P. 739. DOI: 10.1007/s00894-010-0767-8
  17. 17. Ohkubo T., Kidena K., Takimoto N., Ohira A. // J. Mol. Model. 2012. V. 18. P. 533. DOI: 10.1007/s00894-011-1091-7
  18. 18. Sun H., Yu M., Li Z., Almheiri S. // J. Chem. 2015. V. 2015. P. 169680. DOI: 10.1155/2015/169680
  19. 19. Jang S.S., Molinero V., Çaǧın T., Goddard W.A. // J. Phys. Chem. B. 2004. V. 108. P. 3149. DOI: 10.1021/jp036842c
  20. 20. Tse Y.-L.S., Herring A.M., Kim K., Voth G.A. // J. Phys. Chem. C. 2013. V. 117. P. 8079. DOI: 10.1021/jp400693g
  21. 21. Burlatsky S., Darling R.M., Novikov D., Atrazhev V.V., Sultanov V.I., Astakhova T.Y., Su L., Brushett F. // J. Electrochem. Soc. 2016. V. 163. P. A2232. DOI: 10.1149/2.0461610jes
  22. 22. Fong K.D., Self J., Diederichsen K.M., Wood B.M., McCloskey B.D., Persson K.A. // ACS Cent. Sci. 2019. V. 5. P. 1250. DOI: 10.1021/acscentsci.9b00406
  23. 23. Fong K.D., Self J., McCloskey B.D., Persson K.A. // Macromolecules. 2021. V. 54. P. 2575. DOI: 10.1021/acs.macromol.0c02545
  24. 24. Schrödinger Release 2021-2: Maestro, Schrödinger, LLC, New York, NY, 2021.
  25. 25. Kayumov R.R., Shmygleva L.V., Evshchik E.Y., Sanginov E.A., Popov N.A., Bushkova O.V., Dobrovolsky Y.A. // Russ. J. Electrochem. 2021. V. 57. P. 911. DOI: 10.1134/S1023193521060045
  26. 26. Banks J.L., Beard H.S., Cao Y., Cho A.E., Damm W., Farid R., Felts A.K., Halgren T.A., Mainz D.T., Maple J.R., Murphy R., Philipp D.M., Repasky M.P., Zhang L.Y., Berne B.J., Friesner R.A., Gallicchio E., Levy R.M. // J. Comput. Chem. 2005. V. 26. P. 1752. DOI: 10.1002/jcc.20292
  27. 27. Leontyev I., Stuchebrukhov A. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 2613. DOI: 10.1039/c0cp01971b
  28. 28. Blazquez S., Abascal J.L.F., Lagerweij J., Habibi P., Dey P., Vlugt T.J.H., Moultos O.A., Vega C. // J. Chem. Theory Comput. 2023. V. 19. P. 5380. DOI: 10.1021/acs.jctc.3c00562 DOI K., Chikasako Y., Kawano S. // Fluid Dyn. Mater. Process. 2015. V. 11. DOI: 10.3970/fdmp.2015.011.001
  29. 29. Brandell D. // Polymer Electrolytes. Molecular dynamics simulations of Li ion and H-conduction in polymer electrolytes. Elsevier, 2010. P. 314–339. DOI 10.1533/9781845699772.1.314
  30. 30. Raabe G. // Molecular Simulation Studies on Thermophysical Properties: With Application to Working Fluids. Maginn E., ed. Springer Singapore. Singapore, 2017.
  31. 31. Shim Y. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 28649. DOI: 10.1039/c8cp05190a
  32. 32. Rapaport D.C. // The Art of Molecular Dynamics Simulation. Cambridge University Press, 2004. DOI: 10.1017/CBO9780511816581
  33. 33. Maginn E.J., Messerly R.A., Carlson D.J., Roe D.R., Elliot J.R. // Living J. Comput. Mol. Sci. 2018. V. 1. P. 6324 DOI: 10.33011/livecoms.1.1.6324
  34. 34. Liu H., Maginn E. // J. Chem. Phys. 2011. V. 135. P. 124507
  35. 35. DOI: 10.1063/1.3643124
  36. 36. Kumar G., Kartha T.R., Mallik B.S. // J. Phys. Chem. C. 2018. V. 122. P. 26315. DOI: 10.1021/acs.jpcc.8b06581
  37. 37. Sarangi S.S., Zhao W., Müller-Plathe F., Balasubramanian S. // ChemPhysChem. 2010. V. 11. P. 2001. DOI: 10.1002/cphc.201000111
  38. 38. France-Lanord A., Grossman J.C. // Phys. Rev. Lett. 2019. V. 122. P. 136001. DOI: 10.1103/PhysRevLett.122.136001
  39. 39. Del Pópolo M.G., Voth G.A. // J. Phys. Chem. B. 2004. V. 108. P. 1744. DOI: 10.1021/jp0364699
  40. 40. Kowsari M.H., Alavi S., Najafi B., Gholizadeh K., Dehghanpisheh E., Ranjbar F. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 8826. DOI: 10.1039/c0cp02581j https://github.com/OsherovPM/msd_E_for_ionic_conductivity
  41. 41. Gebremichael Y., Schrøder T.B., Starr F.W., Glotzer S.C. // Phys. Rev. E. 2001. V. 64. P. 051503. DOI: 10.1103/PhysRevE.64.051503
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library