RAS Chemistry & Material ScienceМембраны и мембранные технологии Membranes and Membrane Technologies

  • ISSN (Print) 2218-1172
  • ISSN (Online) 2218-1180

Ultrafiltration Purification of Waste Motor Oil Using Tubular Polymer Membranes

PII
S22181180S2218117225030066-1
DOI
10.7868/S2218118025030066
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 15 / Issue number 3
Pages
211-219
Abstract
This paper considers the process of waste motor oil (WMO) purification using tubular polymer micro- and ultrafiltration membranes based on fluoroplastic with an average pore size of 0.5 and 0.05 μm with varying separation modes: transmembrane pressure of 0.2–0.5 MPa, temperature of the separated medium of 313– 353 K. It is shown that the ultrafiltration membrane has a higher retention capacity for asphalt-resinous degradation products compared to the microfiltration membrane. Thus, the kinematic viscosity coefficient in the permeate after the UFFK membrane decreased from 10.84 to 4.76 mm2/s, and after the MFFK membrane - from 10.84 to 7.9 mm2/s. The highest efficiency of the purification process was achieved by the ultrafiltration method at a transmembrane pressure of 0.3–0.4 MPa and a temperature of 343–353 K. Analysis of the IR spectra of the original waste oil and permeate showed that membrane filtration allows for the effective removal of oxidation products from WMO without changing its hydrocarbon composition, which confirms the potential of this technology for the regeneration of waste oils.
Keywords
баромембранное разделение ультрафильтрация полимерные мембраны на основе фторопласта отработанное моторное масло
Date of publication
11.11.2025
Year of publication
2025
Number of purchasers
0
Views
32

References

  1. 1. Шашкин П.И. Регенерация отработанных нефтяных масел. М.: Химия, 1970. 304 с.
  2. 2. Hvang S-T., Kammermejer K. Membrane in separation. New York, London, Syndey, Toronto: A Wiley-Interscience Publication? John Wiley & Sons, 1981. 464 p.
  3. 3. Francois А. Waste Engine Oils: Rerefining and Energy Recovery. Elsevier Science, 2006. 340 p.
  4. 4. Brinkman D.W., Parry B.J. Recycling, Oil. In: Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc, 2005.
  5. 5. Firas А. Elsevier, 2006. 122 p.
  6. 6. Lashkhi V.L., Fuks I.G., Shor G.I. // Chem. Technol. Fuels Oils. 1991. V. 27. P. 311.
  7. 7. Widodo S., Ariono D., Khoiruddin K., Hakim A.N., Wenten I.G. // Environmental Progress & Sustainable Energy. 2018. V. 37. № 6. P. 1867.
  8. 8. Nebesskaya A.P., Balynin A.V., Yushkin A.A., Markelov A.V., Volkov V.V. // Membranes and Membrane Technologies. 2024. V. 6. № 5. P. 350.
  9. 9. Akumefula M.I., Chikwe I.S., Eziukwu C.C. // ChemClass Journal. 2025. V. 9. № 1. Р. 70.
  10. 10. Fedosov S.V., Markelov A.V., Sokolov A.V., Osadchy Yu.P. // Membranes and Membrane Technologies. 2022. V. 4. № 5. Р. 297.
  11. 11. Fedosov S.V., Markelov A.V., Osadchii Yu.P. // Theoretical Foundations of Chemical Engineering. 2024. V. 58. № 3. P. 564.
  12. 12. Mynin V.N., Smirnova E.B., Katsereva O.V., Komyagin E.A., Terpugov G.V., Smirnov V.N. // Chemistry and Technology of Fuels and Oils. 2004. V. 40. № 5. P. 345.
  13. 13. Psoch C., Wendler B., Goers B., Wozny G., Ruschel B. // Journal of Membrane Science. 2004. V. 245. № 1. P. 113.
  14. 14. Gourgouillon D., Schrive L., Sarrade S. // Environmental Science & Technology. 2000. V. 34. № 16. P. 3469.
  15. 15. Gourgouillon D., Schrive L., Sarrade S., Rios G.M. // Separation Science and Technology. 2000. V. 35. № 13. P. 2045.
  16. 16. Sarrade S., Guizard C., Rios G.M. // Desalination. 2002. V. 144. № 1–3. P. 137. https://doi.org/10.1016/S0011-9164 (02)00302-8
  17. 17. Rodriguez C., Sarrade S., Schrive L., Dresch-Bazile M., Paolucci D., Rios G.M. // Desalination. 2002. V. 144. № 1. P. 173.
  18. 18. Markelov A.V. // ChemChemTech. 2023. V. 66. № 1. Р. 114.
  19. 19. Trusek A., Wajsprych M., Tyrka M., Noworyta A. // Desalination and Water Treatment. 2021. V. 214. Р. 120.
  20. 20. Lyadov A.S., Kochubeev A.A., Nebesskaya A.P. // Pet. Chem. 2025. V. 65. Р. 1.
  21. 21. Кравченко Н.Г., Козлов И.А., Щекин В.К., Ефимова Е.А. // Научно-технический журнал “ТРУДЫ ВИАМ”. 2021. № 1. С. 105–113. https://doi.org/10.18577/2307-6046-2021-0-1-105-113
  22. 22. Капустин В.М., Рудин М.Г., Кукес С.Г. Справочник нефтепереработчика. М.: Химия, 2018. 416 с.
  23. 23. Воробьева Г.Я. Химическая стойкость полимерных материалов. М.: Химия, 1981. 296 с.
  24. 24. Sarkar S., Datta D., Das B. // Materials Today: Proceedings. 2022. V. 49. P. 1891.
  25. 25. Abu-Elella R., et al. // Int. J. Chem. Biochem. Sci. 2015. V. 7. P. 57.
  26. 26. Cao Y., et al. // Desalination and Water Treatment. 2009. V. 11. № 1–3. P. 73.
  27. 27. Bellamy L. The Infra-Red Spectra of Complex Molecules. Berlin/Heidelberg, Germany: Springer Science & Business Media, 2012. 300 р.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library