RAS Chemistry & Material ScienceМембраны и мембранные технологии Membranes and Membrane Technologies

  • ISSN (Print) 2218-1172
  • ISSN (Online) 2218-1180

Selection of Anion Exchange Membranes for Optimization of Electrodialytic Extraction of Tartrates from Aqueous Solutions

PII
S22181180S2218117225030043-1
DOI
10.7868/S2218118025030043
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 15 / Issue number 3
Pages
189-199
Abstract
The challenge of extracting organic acids using membrane technologies highlights the critical issue of reducing production costs and improving environmental efficiency in food and medical industries. Organic acids play a key role in manufacturing a wide range of products. Electrodialysis (ED) has established itself as a highly efficient, environmentally friendly, and economical extraction method, particularly for tartrates. During extensive testing focused on extracting tartrates from solutions via electrodialysis, a comparative study of three types of ion-exchange membranes was conducted: ASE, CJMA-3, and MA-41P. Results showed significant differences in efficiency and energy consumption among these membranes. Data were obtained in NaHT solution with pH 3.0, characterized by the maximum molar fraction of monovalent tartrate anions. It was demonstrated that the ASE membrane exhibits inferior mass transfer characteristics and higher energy consumption during the electrodialytic extraction of tartrates compared to the CJMA-3 membrane, despite having the highest experimental limiting current values. The MA-41P membrane, in turn, demonstrates high mechanical strength, resistance to damage, and extended service life. However, its efficiency in tartrate extraction over the same electrodialysis period proved lower than that of the CJMA-3 membrane. Thus, CJMA-3 is preferable for ED processing of tartrate-containing solutions.
Keywords
электродиализ тартраты коэффициент извлечения энергозатраты анионообменные мембраны массоперенос
Date of publication
11.11.2025
Year of publication
2025
Number of purchasers
0
Views
27

References

  1. 1. Jiang C., Wang Y., Xu T. // Membrane Technologies for Biorefining. London: Academic Press, 2016. P. 135.
  2. 2. Igliński B., Kiełkowska U., Piechota G. // Clean Technol. Environ. Policy. 2022. V. 24. № 7. P. 2061.
  3. 3. Hülber-Beyer É., Bélafi-Bakó K., Nemestóthy N. // Chem. Pap. 2021. V. 75. № 10. P. 5223.
  4. 4. Mancini E., Mansouri S.S., Gernaey K.V., Luo J., Pinelo M. // Crit. Rev. Environ. Sci. Technol. 2019. V. 50. № 18. P. 1829.
  5. 5. Kim N., Jeon J., Chen R., Su X. // Chem. Eng. Res. Des. 2022. V. 178. P. 267.
  6. 6. Kurzrock T., Weuster-Botz D. // Biotechnol. Lett. 2010. V. 32. P. 331.
  7. 7. Nam H.-G., Park C., Jo S.-H., Suh Y.-W., Mun S. // Process Biochem. 2012. V. 47. № 12. P. 2418.
  8. 8. López-Garzón C.S., Straathof A.J.J. // Biotechnol. Adv. 2014. V. 32. № 5. P. 873.
  9. 9. Демина Н.Г., Румянцева Н.Ф., Антонова С.В., Лукьянов Д.А., Федоров А.С., Бондаренко П.Ю., Гулевич А.Ю., Дебабов В.Г. // Биотехнология. 2015. № 6. С. 52.
  10. 10. Zhao J., He G., Liu G., Pan F., Wu H., Jin W., Jiang Z. // Prog. Polym. Sci. 2018. V. 80. P. 125.
  11. 11. Fehér J., Cervenanský I., Václavík L., Markoš J. // Sep. Purif. Technol. 2020. V. 235. P. 116222.
  12. 12. Huang C., Xu T., Zhang Y., Xue Y., Chen G. // J. Membr. Sci. 2007. V. 288. № 1–2. P. 1.
  13. 13. Yang H.K., Moon S.H. // J. Chem. Technol. Biotechnol. 2010. V. 76. P. 169.
  14. 14. Wang Q., Cheng G., Sun X., Jin B. // Process Biochem. 2006. V. 41. № 1. P. 152.
  15. 15. Wang X., Wang Y., Zhang X., Xu T. // Bioresour. Technol. 2012. V. 125. P. 165.
  16. 16. Sun X., Lu H., Wang J. // J. Clean. Prod. 2017. V. 143. P. 250.
  17. 17. Igliński B., Piechota G., Iwański P. // Sustain. Chem. Eng. 2020. V. 1. P. 62.
  18. 18. Lameloise M.-L., Lewandowski R. // J. Membr. Sci. 2012. V. 403–404. P. 196.
  19. 19. Prochaska K., Woźniak-Budych M.J. // J. Membr. Sci. 2014. V. 469. P. 428.
  20. 20. Ferrer J.S.J., Laborie S., Durand G., Rakib M. // J. Membr. Sci. 2006. V. 280. № 1–2. P. 509.
  21. 21. Jaime-Ferrer J.S., Couallier E. // J. Membr. Sci. 2008. V. 325. № 2. P. 528.
  22. 22. Wang Y., Zhang N., Huang C., Xu T. // J. Membr. Sci. 2011. V. 385–386. P. 226.
  23. 23. Ttivedi G., Shah B., Adhikary S., Indusekhar V., Rangarajan R. // React. Funct. Polym. 1997. V. 32. № 2. P. 209.
  24. 24. Liu X., Li Q., Jiang C., Lin X., Xu T. // J. Membr. Sci. 2015. V. 482. P. 76.
  25. 25. Rottiers T., Van der Bruggen B., Pinoy L. // J. Ind. Eng. Chem. 2017. V. 54. P. 190.
  26. 26. Liu G., Wu D., Chen G., Halim R., Liu J., Deng H. // Sep. Purif. Technol. 2021. V. 263. P. 118403.
  27. 27. Zhang K., Wang M., Wang D., Gao C. // J. Membr. Sci. 2009. V. 341. № 1–2. P. 246.
  28. 28. Rózsenberszki T., Komáromy P., Hülber-Beyer É., Bakonyi P., Nemestóthy N., Bélafi-Bakó K. // Chem. Eng. Res. Des. 2021. V. 175. P. 348.
  29. 29. Wang Y., Jiang C., Bazinet L., Xu T. // Separation of Functional Molecules in Food by Membrane Technology. London: Academic Press, 2019. P. 349.
  30. 30. Vera E., Ruales J., Dornier M., Sandeaux J., Persin F., Pourcelly G., Vaillant F., Reynes R. // J. Food Eng. 2003. V. 59. № 4. P. 361.
  31. 31. Faucher M., Henaux L., Chaudron C., Mikhaylin S., Margni M., Bazinet L. // J. Food Eng. 2020. V. 273. P. 109802.
  32. 32. Pismenskaya N., Rybalkina O., Solonchenko K., Pasechnaya E., Sarapulova V., Wang Y., Jiang C., Xu T., Nikonenko V. // Polymers. 2023. V. 15. № 10. P. 2288.
  33. 33. Монополярные мембраны. URL: http://azotom.ru/monopolyarnye-membrany/ (дата обращения: 01.013.2024)
  34. 34. Kozaderova O.A., Kim K.B., Gadzhiyevа C.S., Niftaliev S.I. // J. Membr. Sci. 2020. V. 604. P. 118081.
  35. 35. Васильева В.И., Мещерякова Е.Е., Фалина И.В., Кононенко Н.А., Бровкина М.А., Акберова Э.М. // Мембраны и мембранные технологии. 2023. Т. 13. № 3. С. 163.
  36. 36. Berezina N.P., Timofeev S.V., Kononenko N.A. // J. Membr. Sci. 2002. V. 209. P. 509.
  37. 37. Pismenskaya N.D., Rybalkina O.A., Kozmai A.E., Tsygurina K.A., Melnikova E.D., Nikonenko V.V. // J. Membr. Sci. 2020. V. 601. P. 117920.
  38. 38. Titorova V.D., Mareev S.A., Gorobchenko A.D., Gil V.V., Nikonenko V.V., Sabbatovskii K.G., Pismenskaya N.D. // J. Membr. Sci. 2021. V. 624. P. 119036.
  39. 39. Lide R. // CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press, 2005.
  40. 40. Sarapulova V., Nevakshenova E., Pismenskaya N., Dammak L., Nikonenko V. // J. Membr. Sci. 2015. V. 479. P. 28.
  41. 41. Dukhin S.S. // Adv. Colloid Interface Sci. 1991. V. 35. P. 173.
  42. 42. Maletzki F., Rosler H.-W., Staude E. // J. Membr. Sci. 1992. V. 71. № 1–2. P. 105.
  43. 43. Martí-Calatayud M.C., Ruiz-García M., Pérez-Herranz V. // Sep. Purif. Technol. 2025. V. 354. P. 128951.
  44. 44. Belashova E D., Pismenskaya N.D., Nikonenko V.V. // J. Membr. Sci. 2017. V. 542. P. 177–185.
  45. 45. Гельферих Ф. М.: Изд-во Иностр. лит., 1962. С. 490.
  46. 46. Gorobchenko A., Yurchenko O., Mareev S., Zhang C., Pismenskaya N., Nikonenko V. // J. Water Process Eng. 2024. V. 64. P. 105711.
  47. 47. Rybalkina O.A., Sharafan M.V., Nikonenko V.V., Pismenskaya N.D. // J. Membr. Sci. 2022. V. 651. P. 120449.
  48. 48. Pismenskaya N.D., Nikonenko V.V., Melnik N.A., Shevtsova K.A., Belova E.I., Pourcelly G., Cot D., Dammak L., Larchet C. // J. Phys. Chem. B. 2012. V. 116. № 7. P. 2145–2161.
  49. 49. Рыбалкина О.А., Цыгурин К.А., Сарапулова В.В., Мареев С.А., Никоненко В.В., Письменская Н.Д. // Мембраны и мембранные технологии. 2019. Т. 9. № 2. С. 131–145.
  50. 50. Pine S.H. // Organic Reactions. 2011. P. 403–464.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library