- PII
- S22181180S2218117225030036-1
- DOI
- 10.7868/S2218118025030036
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 15 / Issue number 3
- Pages
- 174-188
- Abstract
- A kinetic experiment in the process of dry reforming of methane was performed for the first time in a reactor with a membrane catalyst for the extractor mode, in which the hypothesis of activated mass transfer based on the phenomenon of thermal slip was used for the analysis of the results. The results obtained show that in both parts of the reaction space (in the retentate and in the permeate) of the membrane reactor, intensification of the intermediate stages of dry reforming of methane is observed, compared with the contactor modes. Unlike the contactor modes, in which the methane cracking stage is shifted toward the formation of products of this reaction, in the extractor mode, the process occurs near equilibrium, and the constants of the direct and reverse reactions are close. In this mode, the reverse reaction of the water shift is strongly shifted toward the formation of water gas.
- Keywords
- мембранный реактор углекислотная конверсия метана режим экстрактора кинетический эксперимент активированный массоперенос
- Date of publication
- 11.11.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 31
References
- 1. Грязнов В.М., Смирнов В.С. // Успехи химии. 1974. Т. 43. С. 1716–1738.
- 2. Basile A., et al. Handbook of membrane reactors. Vol. 1: Fundamental materials science, design and optimisation. Woodhead Publishing, 2013. 690 p.
- 3. Ernst B., Haag S., Burgard M. // J. Membrane Science. 2007. V. 288. P. 208–217.
- 4. Weyten H., Keizer K., Kinoo A., Luyten J., Leysen R. // AIChE J. 1997. V. 43. P. 1819–1827.
- 5. Weyten H., Luyten J., Keizerb K., Willems L., Ley- sen R. // Catalysis Today. 2000. V. 56. P. 3–11.
- 6. Itoh N., Xu W.C., Hara S., Kakehida K., Kaneko Y., Igarashi A. // Ind. Eng. Chem. Res. 2003. V. 42. P. 6576–6581.
- 7. Дытнерский Ю.И., Брыков В.П., Каграманов Г.Г. Мембранное разделение газов. M.: Химия, 1991. С. 334
- 8. Ross J.H., Xue E. // Catalysis Today. 1995. V. 25. P. 291–301.
- 9. Didenko L.P., Sementsova L.A., Babak V.N., Chizhov P.E., Dorofeeva T.V., Kvurt J.P. // Membranes and Membrane Technologies. 2020. V. 2. P. 85–97.
- 10. Lombardo E.A., Cornaglia C., Munera J. // Catalysis Today. 2016. V. 259. P. 165–176.
- 11. Mironova E.Y., Lytkina A.A., Ermilova M.M., et al. // Pet. Chem. 2020. V. 60. P. 1232–1238.
- 12. Iulianelli A., Liguori S., Vita A., Italiano C., Fabiano C., Huang Y., Basile A. // Catalysis Today. 2016. V. 259. P. 368–375.
- 13. Iulianelli A., Liguori S., Vita A., Italiano C., Fabiano C., Huang Y., Basile A. // Catalysis Today. 2016. V. 259. P. 368–375.
- 14. Daramola M.O., Burger A.J., Giroir-Fendler A. // Chemical Engineering J. 2011. V. 171. P. 618–627.
- 15. Benguerba Y., Virginie M., Dumas C., et al. // Kinetics and Catalysis. 2017. V. 58. P. 328–338.
- 16. Гаврилова Н.Н., Губин С.А., Мячина М.А., Скудин В.В. // Мембраны и мембранные технологии. 2023. Т. 13. С. 505–520.
- 17. Gavrilova N.N., Sapunov V.N., Skudin V.V. // Chemical Engineering J. 2019. V. 374. P. 983–991.
- 18. Романков П.Г., Рашковская Н.Б., Фролов В.Ф. Массообменные процессы химической технологии. Л.: Химия, 1975. 336 с.
- 19. Коган В.Б. Теоретические основы типовых процессов химической технологии: Учебное пособие. Л.: Химия, 1977. 592 с.
- 20. Лыков А.В. Теория сушки. 2-е изд. М.: Энергия, 1968. 472 с.
- 21. Gupta N.K. A motionless gas micropump using thermal transpiration in bulk nanoporous materials: dis. … doctor of philosophy / N.K. Gupta; University of Michigan. Michigan, 2010. 162 p.
- 22. Membrane Reactors: Distributing Reactants to Improve Selectivity and Yield. Ed. by Andreas Seidel-Morgenstern. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2010. ISBN: 978-3-527-32039-4.
- 23. Шульмин Д.А. Углекислотная конверсия углеводов с использованием мембранных катализаторов: дис. … канд. хим. наук: 05.17.07; защищена: 29.11.2011 / Шульмин Денис Александрович. М., 2011. 181 с.
- 24. Gavrilova N.N., Gubin S.A., Myachina M.A., Skudin V.V. // Membranes. 2021. V. 11. P. 497.
- 25. Karniadakis G., Beskok A., Aluru N. Microflows and Nanoflows: Fundamentals and Simulation. Berlin, Germany: Springer Science & Business Media, 2005. P. 817.
- 26. Sharipov F. Rarefied Gas Dynamics: Fundamentals for Research and Practice. First ed. Wiley-VCH Verlag GmbH & Co. KGaA, 2016. P. 305.
- 27. Khoshtinat Nikoo M., Amin N.A.S. // Fuel Proc. Technol. 2011. № 92. P. 678–691.