ОХНММембраны и мембранные технологии Membranes and Membrane Technologies

  • ISSN (Print) 2218-1172
  • ISSN (Online) 2218-1180

ГАЗОПРОНИЦАЕМОСТЬ МЕМБРАН НА ОСНОВЕ КРИСТАЛЛИЗУЮЩЕГОСЯ ПОЛИГЕКСАДЕЦИЛМЕТИЛСИЛОКСАНА

Код статьи
S22181180S2218117225030015-1
DOI
10.7868/S2218118025030015
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 15 / Номер выпуска 3
Страницы
151-161
Аннотация
В данной работе получены мембраны на основе кристаллизующегося полигексадецилметилсилоксана (ПГДМС) и исследованы их газотранспортные свойства в отношении ряда легких углеводородов с акцентом на проницаемость и селективность мембран для пары газов – и-бутана и метана. Для мембран на основе ПГДМС обнаружен фазовый переход первого рода (кристаллизация боковых алкильных цепей) с температурой плавления (T) 26°C. Показано, что транспортные свойства мембраны существенно определяются их фазовым состоянием. Коэффициенты проницаемости, диффузии и растворимости газов меняются скачкообразно в окрестности T. Так, понижение температуры от 30° до 20°C приводит к падению коэффициентов проницаемости углеводородов на порядок. С одной стороны, селективность мембран при температуре T > T для пары и-бутан/метан не превышает 25, что сопоставимо с результатами для ранее исследованных полиалкилметилсилоксанов с более короткими алкильными цепями. С другой стороны, селективность полукристаллических мембран при температуре T < T несмотря на заметную редукцию газопроницаемости, может достигать значений селективности ~150.
Ключевые слова
мембраны газопроницаемость селективность кристаллизация боковых цепей
Дата публикации
04.08.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
28

Библиография

  1. 1. Grushevenko E.A., Borisov I.L., Volkov A.V. // Petrol. Chem. 2021. V. 61. № 9. P. 959–976.
  2. 2. Yang J., Vaidya M.M., Harrigan D.J., Duval S.A., Hamad F., Bahamdan A.A. // Sep. Purif. Tech. 2020. V. 242. P. 116774.
  3. 3. Mushardt H., Müller M., Shishatskiy S., Wind J., Brinkmann T. // Membranes. 2016. V. 6. № 1. P. 16.
  4. 4. Schulz J., Peinemann K.-V. // J. Membr. Sci. 1996. V. 110. № 1. P. 37–45.
  5. 5. Khanbabaei G., Vasheghani-Farahani E., Rahmanpour A. // Chem. Eng. J. 2012. V. 191. P. 369–377.
  6. 6. Grushevenko E.A., Borisov I.L., Bakhtin D.S., Bondarenko G.N., Levin I.S., Volkov A.V. // React. Funct. Polym. 2019. V. 134. P. 156–165.
  7. 7. Grushevenko E.A., Borisov I.L., Knyazeva A.A., Volkov V.V., Volkov A.V. // Sep. Purif. Tech. 2020. V. 241. P. 116696.
  8. 8. Espenschied B., Schulz R.C. // Makromol. Chem. Rapid Commun. 1983. V. 4. P. 633.
  9. 9. Mogri Z., Paul D.R. // Polymer. 2001. V. 42. № 6. P. 2531.
  10. 10. Mogri Z., Paul D.R. // Polymer. 2001. V. 42. № 6. P. 7781.
  11. 11. López-Carrasquero F., de Ilarduya A.M., Cárdenas M., Carrillo M., Arnal M.L., Laredo E., Torres C., Méndez B., Müller A.J. // Polymer. 2003. V. 44. № 17. P. 4969–4979.
  12. 12. Rim P.B., Rasoul H.A.A., Hurley S.M., Orler E.B. Scholsky K.M. // Macromolecules. 1987. V. 20. № 1. P. 208.
  13. 13. Borisov I.L., Grushevenko E.A., Anokhina T.S., Bakhtin D.S., Levin I.S., Bondarenko G.N., Volkov V.V., Volkov A.V. // Mater. Today Chem. 2021. V. 22. P. 10059.
  14. 14. Sokolov S.E., Grushevenko E.A., Volkov V.V., Borisov I.L., Markova S.Yu., Shalygin M.G., Volkov A.V. // Membr. Membr. Technol. 2022. V. 4. № 6. P. 377–384.
  15. 15. Malakhov A.O., Sokolov S.E., Grushevenko E.A., Volkov V.V. // Membranes. 2023. V. 13. № 1. P. 124.
  16. 16. Stern S.A., Shah V.M., Hardy B.J. // J. Polym. Sci. B. 1987. V. 25. № 6. P. 1263–1298.
  17. 17. Matteucci S., Yampolskii Y., Freeman B.D., Pinnau I. In: Materials Science of Membranes for Gas and Vapor Separation, Ed. by Yampolskii Y., Pinnau I., Freeman B.D. (John Wiley & Sons, 2006), Chap. 1, Chichester.
  18. 18. Yampolskii Y., Starannikova L., Belov N., Berneshev M., Gringolts M., Finkelstein E. // J. Membr. Sci. 2014. V. 453. P. 532–545.
  19. 19. Van Kevelen D.W., Nijenhuis K.Te. Properties of polymers. Elsevier, Amsterdam, 2009. Chap. 18.
  20. 20. Terlyakov V., Meares P. // Gas Sep. Purif. 1990. V. 4. № 2. P. 66–74.
  21. 21. Sarkar A., Mehra M., Dasgupta D., Negi L., Saxen A. // Macromolecules. 2018. V. 51. № 22. P. 9354–9359.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека